A Multi-D-Shaped Optical Fiber for Refractive Index Sensing

نویسندگان

  • Chien-Hsing Chen
  • Tzu-Chein Tsao
  • Jaw-Luen Tang
  • Wei-Te Wu
چکیده

A novel class of multi-D-shaped optical fiber suited for refractive index measurements is presented. The multi-D-shaped optical fiber was constructed by forming several D-sections in a multimode optical fiber at localized regions with femtosecond laser pulses. The total number of D-shaped zones fabricated could range from three to seven. Each D-shaped zone covered a sensor volume of 100 μm depth, 250 μm width, and 1 mm length. The mean roughness of the core surface obtained by the AFM images was 231.7 nm, which is relatively smooth. Results of the tensile test indicated that the fibers have sufficient mechanical strength to resist damage from further processing. The multi-D-shaped optical fiber as a high sensitive refractive-index sensor to detect changes in the surrounding refractive index was studied. The results for different concentrations of sucrose solution show that a resolution of 1.27 × 10(-3)-3.13 × 10(-4) RIU is achieved for refractive indices in the range of 1.333 to 1.403, suggesting that the multi-D-shaped fibers are attractive for chemical, biological, and biochemical sensing with aqueous solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications

We report the optimization of the length of a D-shaped plastic optical fiber (POF) sensor for refractive index (RI) sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR). POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the ...

متن کامل

Design of a Spiral-Shaped Mach-Zehnder Interferometric Sensor for Refractive Index Sensing of Watery Solutions

IOMS Group, MESA+ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. e-mail: [email protected], [email protected] The design of a spiral-shaped Mach-Zehnder Interferometric sensor (sMZI sensor) for refractive index sensing of watery solutions is presented. The goal of the running project is to realise a multi-sensing array by placing ...

متن کامل

Engineering metal oxide nanostructures for the fiber optic sensor platform.

This paper presents an effective integration scheme of nanostructured SnO2 with the fiber optic platform for chemical sensing applications based on evanescent optical interactions. By using a triblock copolymer as a structure directing agent as the means of nano-structuring, the refractive index of SnO2 is reduced from >2.0 to 1.46, in accordance with effective medium theory for optimal on-fibe...

متن کامل

Sensitivity Analysis of Different Shapes of a Plastic Optical Fiber-Based Immunosensor for Escherichia coli: Simulation and Experimental Results

Conventional pathogen detection methods require trained personnel, specialized laboratories and can take days to provide a result. Thus, portable biosensors with rapid detection response are vital for the current needs for in-loco quality assays. In this work the authors analyze the characteristics of an immunosensor based on the evanescent field in plastic optical fibers with macro curvature b...

متن کامل

Two-curve-shaped biosensor using photonic crystal nano-ring resonators

We design a novel nano-ring resonator using two-dimensional photonic crystal (2D-PhC), for bio-sensing applications. The structure of biosensor is created by two-curve-shaped ring resonator which sandwiched by two waveguides. These are configured by removing one row of air holes. The refractive index of sensing hole is changed by binding an analyte. Hence, intensity of the transmission spectrum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2010